Moving frames and compatibility conditions for three-dimensional director fields
نویسندگان
چکیده
The geometry and topology of the region in which a director field is embedded impose limitations on kind supported orientational order. These manifest as compatibility conditions that relate quantities describing to embedding space. For example, two dimensions (2D) splay bend fields suffice determine uniquely (up rigid motions) must comply with one relation linear Gaussian curvature manifold. In 3D there are additional local director, i.e. available observer residing within material, number distinct ways yield geometric frustration. So far it was unknown how many such required describe field, nor what relations they satisfy. this work, we address these questions directly. We employ method moving frames show fully determined by five fields. shown be related each other space through six differential relations. As an application our method, characterize all uniform distortion fields, i.e., directors for characterizing constant space, manifolds curvature. classification phases has been recently provided Euclidean where textures correspond foliations parallel congruent helices. non-vanishing curvature, pure twist phase only solution positively curved while hyperbolic (non-necessarily parallel) Further analysis expected allow also construct new non-uniform
منابع مشابه
tight frame approximation for multi-frames and super-frames
در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...
15 صفحه اولMoving in three-dimensional space: frames of reference, vectors, and coordinate systems.
We move in a three-dimensional world. What are the motor commands that generate movements to a target in space, and how is sensory information used to control and coordinate such movements? To answer these questions, one must determine how spatial parameters are encoded by the activity of neurons. Within the last decade, experimenters have begun to study a variety of movements in three-dimensio...
متن کاملMoving Frames and Moving Coframes
First introduced by Gaston Darboux, and then brought to maturity by Élie Cartan, [4], [5], the theory of moving frames (“repères mobiles”) is widely acknowledged to be a powerful tool for studying the geometric properties of submanifolds under the action of a transformation group. While the basic ideas of moving frames for classical group actions are now ubiquitous in differential geometry, the...
متن کاملMoving frames
Although the ideas date back to the early nineteenth century (see [1; Chapter 5] for detailed historical remarks), the theory of moving frames (“repères mobiles”) is most closely associated with the name of Élie Cartan, [12], who molded it into a powerful and algorithmic tool for studying the geometric properties of submanifolds and their invariants under the action of a transformation group. I...
متن کاملMoving Frames for Cotangent Bundles
This paper has a very modest scope: we present our “operational system” for Hamiltonian mechanics on cotangent bundles M = T Q, based on moving frames. In a related work [10], we will present some concrete examples to convey the algorithmical nature of this formalism. A powerful tool in riemannian geometry is the “method of moving frames”, introduced by Élie Cartan. Actually, moving frames appe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2021
ISSN: ['1367-2630']
DOI: https://doi.org/10.1088/1367-2630/abfdf6